品牌
生产厂家厂商性质
常州市所在地
盐城涂装废气处理设备
活性炭吸附和催化燃烧设备对于挥发性有机气体的处理效果非常好,其净化率可以达到98%。其工艺原理如下:涂装废气通过过滤系统过滤掉大颗粒物质,然后使废弃的达到吸附箱中。吸附箱中的活性炭会吸附掉废气中大部分有害气体。吸附后的气体在经过催化燃烧设备,在较低的起燃温度条件下发生无焰燃烧,并氧化分解为CO2 和H2O,同时放出大量热量。活性炭吸附后还可采用热空气再生法进行脱附。热空气再生对吸附系统材料的要求较低,利用热空气对活性炭纤维吸附的甲苯进行解吸,适宜的脱附工艺条件为温度180℃,脱附时间40min,脱附空气流速0.106m/s;通过建立示范工程对热空气解吸能耗进行分析,结果表明热空气脱附若采用蒸汽为加热源时,每回收1kg溶剂约需电0.5kWh及1.6kg蒸汽,小于一般蒸汽直接加热回收系统中的2~5kg蒸汽的用量,热氮气脱附是一种高效的方法,140℃脱附30min,氮气流量为2.6m3/h,脱附率为90%左右。
2.UV光解催化氧化
UV光解氧化废气净化装置采用高强度纳米紫外线破坏、分解大分子链为小分子链,再利用臭氧和烃基自由基、催化剂进行催化氧化,使有机物变为二氧化碳和水。
(1)破坏裂解阶段:采用特制高强度纳米紫外线光管在处理装置内产生高能C波段(253.7波段)紫外线,破坏破坏、裂解有机物分子链,改变物质结构,将大分子物质裂解、氧化成为低分子物质或无害物质,如水、二氧化碳。
(2)催化氧化阶段:采用高强度纳米紫外线光管在处理装置内产生高能C波段(185波段)紫外线,此波段紫外线光束可分解空气中的氧分子产生游离的活性氧,游离氧因电子状态不稳定极易与氧分子结合产生臭氧。臭氧对有机物具有*的氧化作用,可裂解恶臭气体分子键、破坏细菌的DNA,达到脱臭杀菌的目的。
3.沸石转轮吸附+蓄热式焚烧炉
含挥发性有机物的废气通过空气过滤器等预处理后,再经过疏水性沸石浓缩转轮,废气中的VOCs能被有效吸附于沸石中,达到去除的目的。经过沸石转轮吸附后的净化气体,直接通过烟囱达标排放到大气中。
沸石浓缩转轮分为三个区:吸附区、脱附区和冷却区。沸石转轮以每小时1-6转的速度持续旋转,与此同时将吸附的挥发性有机物传送到转轮的脱附区。在脱附区中利用小股加热气体(180-220℃)将挥发性有机物进行脱附。脱附后的沸石转轮旋转到冷却区,经冷却后旋转至脱附区,持续吸附挥发性有机气体。
脱附后的浓缩有机废气送到RTO燃烧炉进行燃烧,转化成水和二氧化碳后排放到大气中。利用热交换将燃烧产生的热量用来预热脱附用气体,并提供废气在燃烧炉燃烧前的预热,使系统达到节能的功效。
盐城涂装废气处理设备
涂装是现代产品制造过程中的重要组成部分,是指对金属和非金属表面覆盖保护层或装饰层,是产品表面防护和装饰基本的技术手段。涂层工艺可简单概括为:前处理→喷涂→干燥或固化。涂装废气主要来自前处理、喷涂、干燥过程,排放的污染物主要有:前处理过程中产生的粉尘或酸雾;漆雾主要来源于空气喷涂作业中溶剂涂层飞扬的部分,其成分与所用涂料一致。有机溶剂主要来源于涂料使用中的溶剂和稀释剂,大部分为挥发性排放物,主要污染物为二甲苯、苯、甲苯等。涂装排放的有害废气主要集中在喷漆生产线,其中喷漆室,干燥室和干燥室是废气的主要来源。
对于涂装废气,可采用适当的方法进行净化处理。净化方法有两种,一种是回收废气中的有机溶剂,另一种是将废气中的有机溶剂分解成CO2和H2O。
有机溶剂回收方法有活性炭吸附法、冷凝法等,而有机溶剂分解法有燃烧法、生物法等,今天主要介绍了有机溶剂分解法。
1、有机溶剂分解-燃烧法:
燃烧包括直接燃烧和催化燃烧,在国外得到了广泛的应用。适用于高浓度、小风量VOCs的处理,对整个工艺的安全性、气密性要求高。在处理大风量、低浓度的VOCs时,需要采用相应的浓缩技术进行预处理。
2、有机溶剂分解-生物法:
生物净化法早是应用于废气脱臭,随着*开始力推生物净化技术,该技术逐渐应用于挥发性有机污染物的治理领域,利用微生物新陈代谢原理,以工艺中污染物质为养分达到处理效果,对有机废气的去除率能达到95%,生物净化技术其设备简单,投资和运行成本低,无二次污染等优点。
2.1 活性碳吸附+催化燃烧法原理
含有机物的废气经风机的作用,经过漆雾过滤器再经过活性炭吸附层,有机物质被活性炭*的作用力截留在其内部,洁净气体排出;经过一段时间后,活性炭达到饱和状态时,停止吸附,此时有机物已被浓缩在活性炭内。
催化净化装置内设加热室,启动加热装置,进入内部循环,当热气源达到有机物的沸点时,有机物从活性炭内脱附出来,进入催化室进行催化分解成CO2和H2O,同时释放出能量。利用释放出的能量再进入吸附床脱附时,此时加热装置*停止工作,有机废气在催化燃烧室内维持自燃,尾气再生,循环进行,直至有机物*从活性炭内部分离,至催化室分解。活性炭得到了再生,有机物得到催化分解处理,理论设计处理效率约为90%。
2.2 沸石浓缩转轮+焚烧法原理
沸石浓缩转轮+高温焚烧法采用沸石转轮将大风量,低浓度废气转化为高浓度低风量气体,从而能选择较小的焚烧炉对高浓度有机废气进行焚烧。在低温条件下,有机废气通过沸石转盘,有机物被吸附在沸石转盘上,分出一部分气流量(约1/20)进入冷却区,冷却区气体进入换热器被加温到180℃ 到200℃,然后高温气体反向回到沸石转盘,将有机物脱附下来,浓度可做到原来的25倍以上。
在700℃-800℃温度下,将浓缩后的有机废气裂解为清洁的CO2和H2O,从而到达无害化排放。废气通过提升阀被提升到燃烧室进行燃烧,有机物处理效率99%以上。
2.3 两种方式的比较
涂装生产线面漆喷漆室排风量大、浓度低,场地狭窄,采用吸附法处理存在诸多问题,实施的可行性极低,以100万m3/h 风量为例,主要对比见表1。
目前,国内主要是电子、集装箱、汽配、化工等一些小型高浓度,低风量(排风量一般在25 万m3以下),对喷涂车间喷涂风场要求不高,在环保要求严格的地域采用了“活性碳吸附+催化燃烧法”,该方法适用于低浓度(≤1000mg/m3)且不宜采用直接燃烧或催化燃烧法和回收处理的有机废气。
因汽车整车喷漆室风速高精度控制要求(垂直风速±0.05m/s),活性碳占地面积大,吸附效率下降快,解附时存在相对较高的安全风险的原因,故选择沸石浓缩转轮+高温焚烧法。目前活性碳吸附+催化燃烧法在国内大型汽车整车涂装生产线无实际应用案例,国外已基本淘汰。
3 沸石浓缩转轮
3.1 沸石的吸附机理
沸石(又称分子筛)是一种硅铝酸盐多微孔的硅酸盐或硅铝酸盐晶体,是由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子尺寸大小(通常为0.3~2 nm)的孔道和空腔体系,因吸附分子大小和形状不同而具有筛分大小不同的流体分子的能力。
分子筛对物质的吸附来源于物理吸附(范德华力),其晶体孔穴内部有很强的极性和库仑场,对极性分子(如水)和不饱和分子表现出强烈的吸附能力。分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,获得了广泛的应用。
3.2 沸石转轮(VOC 浓缩器)工作原理
沸石转轮的目的是为了将VOC 气体从大风量浓缩到小风量中。在小风量中,VOC 气体将更高效地被焚烧炉(TAR/RTO)处理。吸附的意思是流体分子在被称作“吸附介质”的“活性”物质上富集。类似于海绵,吸附介质将VOC 吸收进来,然后通过高温解吸再将VOC“挤”出去。VOC 浓缩器的转轮是由蜂窝状的陶瓷纤维片为材料组成,而其中又被浸渍了防水的沸石(分子筛)作为吸附介质。此浓缩系统是一个连续的运转过程,转轮一直在旋转。因此它被分为了三个区域:处理区,解吸区,冷却区,每个区域间相互隔离。含VOC 的废气在经过旋转转轮处理区的时候被收集,当气体过了转轮后,VOC 就被转轮上的吸附介质吸附了。净化的气体被释放进入大气。在解吸区域,附着在转轮上的VOC 被连续的高温及低流量解吸气体从反方向解吸收。高浓缩的VOC 气体从转盘中脱离并被送到热氧化系统做后的VOC 净化。转轮中热的解吸区域接着被转到了冷却区域,在这里冷却气会将它冷却。VOC 废气一部分通过这块冷却区域,并去到解吸换热器中换热。在换热器中,冷却气会被TAR/RTO 等高温裂解设备出来的高温净化气体换热成为高温的解吸气体,沸石浓缩转轮分区见图6。
与其它吸附剂介质相比,沸石具有很多优势:可燃性低、由于解吸温度高,从而使用寿命长、高沸点化合物累积量减少、以及耐化学性高。
3.3 沸石浓缩转轮系统
沸石转轮浓缩系统由湿度控制系统、过滤系统、浓缩器构成。
温湿度调节系统,调节进入浓缩器废气的温湿度,通常沸石在40℃及相对湿度75%以下,吸附效果。废气过滤系统,过滤喷漆室废气中易导致浓缩设备阻塞和失效的杂质、颗粒物;一般情况下,每套过滤系统分四级过滤,安装在每套温湿度调节系统后,后一级过滤选用F9级,保证沸石转轮使用寿命。
沸石浓缩转轮系统,浓缩有低浓度机废气中的有机物(VOC),并将大风量变为小风量,将VOC 浓缩废气送入RTO或TAR 进行清洁净化处理,根据某司涂装喷漆室的工艺、涂料特点,VOC爆炸浓度极限约为12g/m3(设计值必须小于极限值的25%),通常我们会将浓缩器的浓缩比设计为25:1,VOC去除效率可达90%以上。利用VOC 具有可燃性,在保证安全的前提下,做到大的浓缩比,以节约天然气的耗量。经沸石浓缩转轮净化后的气体中VOC 的浓度含量达到20mg/m3以下,与欧洲标准基本持平。