超精细多功能无液氦低温光学恒温器

Montana超精细多功能无液氦低温光学恒温器

参考价: 面议

具体成交价以合同协议为准
2021-12-20 07:14:01
31
产品属性
关闭
QUANTUM量子科学仪器贸易(北京)有限公司

QUANTUM量子科学仪器贸易(北京)有限公司

初级会员1
收藏

组合推荐相似产品

产品简介

Montana Instruments*致力于低温恒温器的设计与研发。Montana超精细多功能无液氦低温光学恒温器在温度稳定性和防震性方面做*级别,已经取得突破性技术并且申请保护。

详细介绍

超精细多功能无液氦低温光学恒温器

Montana Instruments新型超精细多功能无液氦低温光学恒温器*摆脱了液氦。*闭循环的制冷系统只需要极少量的氦气即可让系统达到3.2K的低温。系统具有超快降温、超低震动和超高的温度稳定性。全自动化的控制软件,简化了用户的操作流程。

Montana Instruments品种齐全的低温系列产品以及功能性选件让您的实验具有无限的扩展空间。我们已经将传统的光学恒温器发展成为涵盖光学、电学、磁学、表面科学等多个领域的*实验设备。

•  温度范围:3.2K-350K (无负载时可低达2.7K)

•  超低震动:峰-峰值5nm(RMS<1nm)

•  温度稳定性:大波动<10mK

•  降温时间:~2小时

 

应用领域:

金刚石色心、量子计算、量子光学、腔量子电动力学、自旋电子学:磁光kerr效应、单光子发射......

设备型号:

Cryostation系列产品列表

  
标准系统 Cryostation® S50 中型系统 Cryostation® S100 大型系统 Cryostation®S200
     
  
高阻尼系统HILA Workstation 低温显微镜Cryo-OPTIC® S50-CO 低温显微镜Cryo-OPTIC®S100-CO
     
  
低温磁光系统Magneto-Optic 高精度低温微型MOKE Nano-MOKE 低温铁磁共振 Cryo-FMR

 

应用案例

■  金刚石NV色心研究

金刚石NV色心(Nitrogen-vacancy defect centers) 近年来在科研界被高度关注。NV色心*且稳定的光学特性使其拥有广泛的应用前景。在量子信息领域,NV色心可以作为单光子源用于量子计算。NV色心作为具有量子敏感度的传感设备,还可应用于纳米尺度磁场、电场、温度、压力的探测。在生物学领域,NV色心是完美的生物标识物,具有光学性能稳定,细胞毒性低的特点。

Montana Instruments开发的低温恒温器专门针对NV色心领域研究需要而进行优化,扫除了科研人员进入NV色心研究领域的障碍。以下是低温(4K)NV色心研究的实验方案举例。

 

1. 总体NV色心信号收集实验

将磁性样品覆盖在表面具有较多的NV色心的块体金刚石衬底上。这个NV色心表面层通常由离子注入或在金刚石表面合成富氮表面层来实现。通常采用532nm的激光激发NV色心到激发态,并在630-800nm波长范围收集荧光信号。同时利用微波信号激发和探测NV色心的自旋态(ESR)。荧光信号由二维的CCD探测阵列收集成像并与样品相对应。与单个NV色心的研究不同,该实验方案采用大工作距离获得大视野范围的成像,从而实现大面积信号的采集。

CCD与显微镜成像

 

2. 单个NV色心研究:样品表面的纳米金刚石

纳米金刚石的单个NV色心探测可以通过共聚焦显微技术来实现。实验装置包括三维低温纳米位移台,Z方向可以准确调整样品到焦平面,XY可以对样品表面进行扫描。Montana Instruments专li设计方案可以采用高数值孔径物镜对4K的样品中的单个NV色心进行测量。系统的收集效率高、光斑直径小,轻松聚焦单个NV色心。采用532nm激光激发,对630nm-800nm范围的荧光信号进行采集。采用可调的微波信号对NV色心的自旋态进行激发,通过荧光信号的峰值位移来确定其自旋态。为了研究感兴趣的区域,通常将金刚石粉末(20-30nm)均匀的撒在样品表面,然后使用三维纳米位移台来扫描样品并且对特定NV色心进行测量。并且可以通过单个NV色心实现在较大温度范围内对样品的性质进行观测。

扫描共聚焦显微镜

Tokura课题组成功的运用此技术研究了FeGe样品中的磁涡旋结构。实验细节请参考:

Using NV-Center Optically Detected Magnetic Resonance (ODMR) as a Probe for Local Magnetic Dynamics in Transition Metals

 

3. 扫描探针量子探测器(例如,扫描磁力显微镜)

我们将一个NV色心固定在扫描探针显微镜的探针末端。可以通过在针尖上“粘贴”纳米金刚石,或采用纳米压印与O2刻蚀技术将块体金刚石加工成再用N-14注入来实现NV色心,现在甚至已经有商业化的针尖。采用共聚焦显微镜将激发光聚焦在扫描探针的NV色心上。样品可以通过低温纳米位移台进行准确扫描。这样便实现了对样品表面的纳米级精度大范围成像测量。该技术理论上可以对多种与NV色心荧光相关的特性进行高精度显微学测量。

扫描探针显微镜

 

Jayich课题组 (UCSB)运用这一技术在BaFe2(As0.7P0.3)2 超导材料的转变温度附近(30K)成功观测到了vortices。这一技术在研究材料低温下的新奇性质方面前景广阔。更多细节请参考:

Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor.

■  高性能低温恒温器在量子计算中的应用

Cryostation®低温恒温器系统可为量子计算相关研究提供多种解决方案,丰富的可选配置与配件可以满足各种实验的需求,诸如离子阱、超导环、NV色心的高数值孔径荧光观测等。根据具体实验需求Montana Instruments可以提供适合的配置方案。

 

量子计算实验案例:RF离子阱

配置方案:高数值孔径荧光读出、多光学通道用于激光制冷、RF+DC电学通道用于制造qiu禁势阱。

作为该实验方案的核心,离子阱量子计算包括N个qiu禁离子。离子可以被qiu禁在泡利(RF)阱或彭宁(磁场)阱中,每个qiu禁离子具有两个态或亚稳态。这里我们简单讨论泡利阱的情况,实验上泡利阱是通过在样品上印制一组具有特殊几何形状的RF电极产生限制电势实现的。在设计好势阱后我们通过激光烧蚀衬底产生一个待qiu禁的离子(常用137Yb+),采用多普勒或Sisyphus冷却方案用激光将高度激发状态的离子冷却至量子态。后再将离子导入精心设计的势阱中。

待离子进入势阱中,将他们在空间上隔开几微米的距离,每个离子代表一个量子比特。量子比特通过库伦相互作用影响量子比特的集体震荡来实现耦合。每一个量子比特都通过与库伦势的“平行”或“反平行”将自己的局部态编码进集体震动。这样每一个在一维链上的量子比特都实现了与其他每个量子比特的耦合。

量子计算的通用“门”操作(CROT, SWAP以及内部量子比特态的任意翻转)可以通过对量子比特光激发来实现。对于137YB+离子链,jia波长为355nm。激光源的稳定性尤为重要,激发频率与电子的共振频率要准确匹配(10KHz或更好),以防止其他临近态的激发。紫外激光由于具有合适的波长与ji佳的频率稳定性常被用于半导体材料的维纳加工,现在也成为量子计算的上佳选择。

量子比特在经过一系列量子算法的门操作后的量子态可以被读出。qiu禁离子的量子态读出是通过测量与量子态相关的荧光实现的。目前的研究通常利用高数值孔径的显微镜可以实现10%左右的收集效率。未来的量子计算可能会通过集成光学微腔的方案来提高荧光光子的收集效率,预计可以大于50%。该集成技术也可以推动可拓展与重构的量子计算电路发展。

总的来说,设计和操纵一个可靠的离子阱量子计算机需要1、稳定的激光源与准确的频率控制。2、有效且控制良好的RF电势来定位与控制qiu禁离子。3、数字控制的空间分辨率很高的脉冲激光来制备、测量、操纵量子比特。4、量子态的可靠探测与读出。

Montana Instruments与科研人员共同设计的离子阱量子计算机

 

MI恒温器与集成式单光子探测器有望提高离子阱的量子态读出

 

参考文献:

[1] ohnson, K. G. et al. Active Stabilization of Ion Trap Radiofrequency Potentials. Review of Scientific Instruments 87, 53110 (2016).

[2] Brown, K. R., Kim, J. & Monroe, C. Co-Designing a Scalable Quantum Computer with Trapped Atomic Ions. npj Quantum Information 16034 (2016).

[3] Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

[4] Steane, A. M. The Ion Trap Quantum Information Processor. Applied Physics B: Lasers and Optics 64, 623–643 (1997).

[5] Faraz Najafi et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. commun,6:5873, 2015

 

■  高性能低温恒温器在自旋电子学中的应用

科研中MOKE常用来表征材料的电子和磁学特征,例如磁畴结构、自旋态密度、磁相变动力学。在高质量纳米结构和近期2D材料中的实验进展表明,有望在集成的光子或自旋电子器件中利用磁光效应在纳米尺度上加强对光的控制。

MOKE实验需要灵活的光路与电学通道以及磁场环境。样品需要一个超稳定的低温环境并且能够调整配置以适应实验需求的多种几何光路。Cryostation基础系统与成熟的选件库可为MOKE提供多种解决方案。通过不同的搭配组合我们可以轻松实现磁光克尔效应、光磁测量、光致发光、偏振分辨测量、自旋输运与动力学、磁畴壁移动、磁阻研究、电学和高频测量、输运性质等方面的研究。以下是部分低温磁光克尔效应实验举例:

 

1. 纵向磁光克尔效应

在纵向MOKE的几何光路中,磁场与样品表面平行,样品中的磁畴平行于磁场方向。激光光源通过偏振器实现设定的偏振。光线通过物镜聚焦在样品感兴趣的区域上。入射光线与样品的磁畴发生相互作用使得反射光线偏振方向改变。偏振方向改变的幅度与局部磁化的强度成比例。通过仪器接收并分析反射光线的克尔转角就可以得到局部磁矩的方向和强度信息。这种测量方案所需的样品环境可以在集成了双极性电磁铁的低温恒温器中来实现,例如Cryostation与Magneto-Optic。

利用纵向克尔效应的宏观磁畴图像测量方案

 

2. 极向磁光克尔效应

在极向克尔几何光路中,磁场沿样品表面的发现方向(适用于面外易磁化轴样品)。此时磁化方向垂直于样品表面,为了收集信号,入射激光需要垂直照射在样品表面。与纵向克尔类似,入射激光的偏振方向在被磁性样品表面反射时会发生轻微的偏转。偏转的程度与局部磁畴的强度和方向有关。在Cryostation与Magneto-Optic装置中,与纵向克尔相比,样品旋转了90°,并且在磁极中间引入了一个小的反射镜来实现入射光线与磁场的平行以及与样品表面的垂直。

 极向MOKE宏观磁畴测量方案

 

3. 时间分辨MOKE

可以用时间分辨(瞬态)的MOKE对脉冲磁场和脉冲电场驱动的磁畴壁移动进行动力学研究。举例来说,可以对用于磁带存储器研究的磁性纳米线中的磁畴壁移动进行测量。磁畴壁通常在预定的位置有电脉冲或磁脉冲注入纳米线。利用MOKE信号对纳米线的局部进行探测,空间分辨率可优于1um,时间分辨率可达到150fs。如果t=0时刻对应于畴壁注入,对区域沿纳米线进行延时脉冲扫描观察MOKE信号的变化。MOKE信号的变化对应磁畴壁移动所引起的磁性翻转。通过测量纳米线不同位置MOKE信号的变化时间可以计算出畴壁的移动速度。

时间分辨MOKE也可以用于研究自旋“群体”的寿命。利用极化的泵浦光对感兴趣的材料进行自旋激发。利用探测光进行延时扫描,MOKE信号的强弱可以计算自旋“群体”密度。自旋的“寿命”可以通过观测自旋“群体”的密度来计算。Kawakami课题组(Ohio State University)利用该方法对过渡族金属二硫化物WS2在低温(<6K)下进行了时间分辨克尔转角测量(TRKR)。对比TRKR信号与显微荧光,研究者发现强激子发光与高自旋密度之间的一种意料之外的反相关关系。这一发现为短时激子自旋角动量到长时导电电子自旋态转化提供了新的见解。

时间分辨克尔效应的原理与装置图

 

4. 强磁场(>1T)MOKE

华盛顿大学的Xu和Cobden 利用7T的超导磁体与低温设备,采用法拉第几何光路测量磁场对光致发光极化的影响对单层WSe2进行了研究。更多信息请阅读:Magnetic Control of Valley Pseudospin: A Story of Symmetry.

 

参考文献:

[1] Durham Magneto Optics Ltd & Beguivin, A. Characterization of the Montana Instruments Cryostation C2 for low temperature Magneto-Optical Kerr Effect measurements using the NanoMOKE 3.

[2] Bushong, E. J. et al. Imaging Spin Dynamics in Monolayer WS2 by Time-Resolved Kerr Rotation Microscopy. arXiv:1602.03568 [cond-mat] (2016).

[3] Aivazian, G. et al. Magnetic Control of Valley Pseudospin in Monolayer WSe2. Nature Physics 11, 148–152 (2015).

[4] Henn, T. et al. Ultrafast supercontinuum fiber-laser based pump-probe scanning MOKE microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. Review of Scientific Instruments 84, 123903 (2013).

 

用户单位

国内部分用户列表(重名为先后购买多台,排名不分先后)

北京大学

华中科技大学

山西大学

山西大学

首都师大

清华大学

苏州纳米所

中国科学技术大学

中国科学技术大学

中科院理化所

中科院半导体所

南京大学

中国科学技术大学

中国科学技术大学

中科院理化所

中国科学技术大学

南京大学

中国科学技术大学

上海理工大学

南开大学

中山大学

中国科学技术大学

北京大学

中科院半导体所

中国科学技术大学

复旦大学

中科院半导体所

武汉大学

西南交通大学

苏州科技学院

清华大学

中科院半导体所

山西大学

东南大学

中国科学技术大学

南开大学

 

上一篇:高温高压加速老化测试箱 下一篇:塑料喷漆水煮箱
提示

请选择您要拨打的电话:

291 [{"ID":"755418","CompanyID":"64487","Title":"高温高压加速老化测试箱","Picture":"","PictureDomain":"","UpdateTime":"2024/11/16 7:32:53","CreateTime":"2024/11/16 7:32:53","ClassName":"技术交流","rn":"3"},{"ID":"754596","CompanyID":"64487","Title":"塑料喷漆水煮箱","Picture":"","PictureDomain":"","UpdateTime":"2024/11/11 7:08:16","CreateTime":"2024/11/11 7:08:16","ClassName":"技术交流","rn":"4"}]