品牌
生产厂家厂商性质
武汉市所在地
一:性能特点
1.电压电流输出灵活组合 输出达4相电压3相电流,可任意组合实现常规4相电压3相电流型输出模式,既可兼容传统的各种试验方式,HDJB-702S微机继电保护测试仪(触摸屏操作)也可方便地进行三相变压器差动试验和厂用电快切和备自投试验。
2.操作方式 装置直接外接笔记本电脑或台式机进行操作,方便快捷,性能稳定。
3.新型高保真线性功放 输出端一直坚持采用高保真、高可靠性模块式线性功放,而非开关型功放,性能。不会对试验现场产生高、中频干扰,而且保证了从大电流到微小电流全程都波形平滑精度优良。
4.高性能主机 输出部分采用DSP控制,运算速度快,实时数字信号处理能力强,传输频带宽,控制高分辨率D/A转换。输出波形精度高,失真小线性好。采用了大量*技术和精密元器件材料,并进行了专业化的结构设计,因而装置体积小、重量轻、功能全、携带方便,开机即可工作,流动试验非常方便。
5.软件功能强大 可完成各种自动化程度高的大型复杂校验工作,能方便地测试及扫描各种保护定值,进行故障回放,实时存储测试数据,显示矢量图,联机打印报告等。可方便进行三相差动保护测试。
6.具有独立直流电源输出 设有一路110V及220V直流电源输出。
7.接口完整 装置带有USB通讯口,可与计算机及其它外部设备通信。
8.完善的自我保护功能 散热结构设计合理,硬件保护措施可靠完善,具有电源软启动功能,软件对故障进行自诊断以及输出闭锁等功能。
二:技术参数
1.交流电流输出
输出精度 0.2级
相电流输出(有效值) 0~40A
三并电流输出(有效值) 0~120A
相电流长时间允许工作值(有效值) 10A
相电流输出功率 420VA
三并电流输出时输出功率 900VA
三并电流输出时允许工作时间 10s
频率范围(基波) 20~1000Hz
谐波次数 1~20 次
2.直流电流输出
输出精度 0.2级
电流输出 0~±10A / 每相,0~±30A / 三并
输出负载电压 20V
3.交流电压输出
输出精度 0.2级
相电压输出(有效值) 0~120V
线电压输出(有效值) 0~240V
相电压/线电压输出功率 80VA / 100VA
频率范围(基波) 20~1000Hz
谐波次数 1~20次
4.直流电压输出
输出精度 0.2级
相电压输出幅值 0~±160V
线电压输出幅值 0~±320V
相电压/线电压输出功率 70VA / 140VA
5.开关量及时间测量
工控型 | 备注 | |
开关量输入 | 8路 | 空接点: 1~20mA,24V 电位接点接入:“0”:0~ +6V; “1”:+11 V~ +250V |
开关量输出 | 4对 | DC:220V/0.2A;AC:220V/0.5A |
时间测量 | 测量范围0.1ms ~ 9999s 测量精度0.1mS |
体积重量
工控型 | |
外形尺寸 | 410×360×200mm³ |
单机重量 | 20kg |
供电电源 | AC 220V±10%,50/60Hz |
环境温度 | -10℃ ~ +50℃ |
6.继电器试验:
调度指令操作票进行运行操作防误并开出操作票,并可将开出的电气倒闸操作票传到电脑钥匙中,操作人员拿电脑钥匙到现场进行倒闸操作。线路防误主机则由线路部门使用,其实现的功能和运行防误主机类似,只是管辖的范围不同。根据各个*部门划分的不同,运行防误和线路防误有的会合并在一起。
配网调度防误主机和配网运行/线路防误主机是配合使用的,其运行模式*城区*配网的运行管理模式的需要。同时,配网调度防误和配网运行防误之间的信息是*共享的,又可以保证相对独立,互不干扰。
现场闭锁设备是针对配网设备而设置的,操作人员拿着电脑钥匙到现场操作,必须严格按电脑钥匙中操作票的操作顺序进行倒闸操作,如果不是操作的设备,电脑钥匙拒绝开放闭锁机构,该项操作就无法进行下去,只有当前操作的设备符合操作票的操作项操作才能进行下去,从而达到防止误操作的目的。完成现场操作后,可以利用电脑钥匙把操作结果回传给主站系统。蓄电池作为直流电源系统的核心组成部分,起作储备电能、应付电网异常和特殊工作情况、维持系统正常运转的关键作用,是电力系统正常工作的系后一道防线。当前,蓄电池在线监测逐渐被人们所重视,在电力、通信等行业应用越来越广泛,但是,蓄电池在线监测及状态评估所采用的关键技术---内阻交流放电法并不被人们所了解,还在模糊认识中。从理论分析和大量实验微机继电保护测试仪(触摸屏)电力工程用可任意证明,蓄电池工作状态及预计使用寿命与内阻具有密切的关系,目前国内外使用的蓄电池监测设备及蓄电池状态分析设备都是以蓄电池内阻为主要指标,结合蓄电池内阻的变化速率及历史数据,建立起专家系统,对蓄电池状态进在线评估,預计其使用寿命。现代电站和变电站都采用大容量蓄电池,其内阻极其微小,为几十到数百微欧,甚至接头的松紧程度都会对测量结果造成影响,并且蓄电池在线工作时有一定的充电纹波干扰,因而使传统的电阻测量技术难以达到测量要求,应采用微电阻精密测量技术进行蓄电池内阻测量才行。1蓄电池的内阻模型蓄电池的简化等效电路。图中Rc为蓄电池正负电极的极化电阻,C为正负电极的双电层电容等效值。R为蓄电池的欧姆电阻。蓄电池连接部分主要是欧姆电阻,而电极极化部分既有欧姆电阻又有极化电阻。1.1欧姆电阻:由极板、汇流排、极柱、电解液、隔膜等的电阻组成,它们服从欧姆定律。1.2极化电阻:它包括浓差极化电阻和电化学极化电阻,由扩散极化电阻、电荷传递电阻组成,是由电极动力学过程和物质转移引起,它们不服从欧姆定律。1.3浓差极化:电流通过蓄电池后,引起正负电极表面附近的电解液浓度变化,进而产生浓极化电动势,其大小与电流大小、温度、电极反应速率、电迁移、扩散速度有关。
1.4电化学极化:当电流通过蓄电池时,由于电极过程某一步的迟缓,阻碍了电极过程的进行,使电极电位离开平衡电极电位。其大小与电流大小、温度、电极真实有效表面积等因素有关。2影响蓄电池内阻的因素
影响蓄电池内阻的因素主要有:2.1蓄电池使微机继电保护测试仪(触摸屏)电力工程用可任意用的时间:隨着使用时间的增加,使电解液失水、极板与连接条的腐蚀、极板的硫酸化、极板变形及活性物质的脱落等因素,造成蓄电池容量减小,蓄电池内阻变大。