品牌
生产厂家厂商性质
武汉市所在地
:产品介绍:
1.HDTS-III双向台区识别仪的工作原理要使用负荷信号传输技术实现,采用DSP和高速准同步采样技术进行信号检测,测试过程中对负荷信号的检测应从内部检测单元获取信号并解析。不存在共零线共高压线信号串扰问题。
2.仪器使用50Hz工频负荷信号在电力线传输,不干扰正常载波通讯或无线通讯工作。
3.产品无主从机差别,任意一个仪器的外观、功能、性能、电源接入方式、用途**;
4.仪器使用7寸彩色液晶屏硅胶按键进行操作和显示,内容包含操作、测量信息和测量结果显示;
5.仪器在外观上不区分主机和分机,工作时具备主机模式和分机模式,工作模式由仪器内部自动判定接入电源确定,接入三相四线为主机模式,接入单相电源为分机模式;
仪器进行多台区同步测试时,满足不少于6个台区同步测试,满足现场复杂台区使用需求,台区编号设置需通过触摸屏进行设置并保证每个测试台区编号单一。
6.接入单相电源的仪器能够设定为主机模式;
7.分机在测试时要作为发起方,主机作为应答方;分机能在主机模式和分机模式间实现按需切换。
8.仪器作为检测分支开关使用时,具备电流钳接入的自动检测功能,满足每一路分支自动接入检测,无需人工设置;
单机支持分支测试的数量为3路分支,多机并列测试时总量不少于12路分支同时测试;
9.仪器的触摸屏上要能根据现场的特殊需求具备普通模式和增强模式,常态使用普通模式,如遇特殊情况,能够使用增强模式进行测试。
10.仪器能够任意选择电源接入点,不*于变压器母排、分线盒、集中器端子排、单/三相表、电缆转接箱、居民电源插座等,仪器根据使用要求选择单相或三相供电,根据测试要求和测试便利性选择主机和分机模式。
二:仪器在执行台区识别功能时,在现场各类条件下,达到以下要求:
1.测试成功率:
测试的一次成功率为100%,测试结果的准确率为100%;
2.测试周期:
在任何条件下,完成一次测试的周期不大于6秒钟;
3.测试半径:
仪器的测试范围能覆盖台区供电半径,能够跨越如三相动力用户、基站等重负荷、强噪声区域,测试半径大于3000米。
4.测试方式及测试结果显示:
仪器进行台区识别功能测试时,同时测试出被测试点所在的相位信息。
三: 仪器在执行分支识别功能时,通过使用电流钳检测零线电流的方式对分支进行检测,在现场各类条件下,达到以下要求:
1.测试成功率:
测试的一次成功率为100%,测试结果的准确率为100%;
2.测试周期:
在任何条件下,完成一次测试的周期不大于10秒钟;
3.测试半径:
仪器的测试范围能覆盖台区供电半径,能够跨越如三相动力用户、基站等重负荷、强噪声区域,测试半径不小于3000米。
4.测试方式及测试结果显示:
仪器进行分支功能测试时,同时测试出被测试点所在的相位信息。
仪器工作在分机模式时,能够测试外部供电电源所在相位,并在液晶屏幕上显示出相位信息。
仪器工作在主机模式时,能检测并显示来自分机所在线路的相位信息。
仪器作为分机使用时,能对接入电源的零火线进行检测,当存在零线、火线反接时,液晶屏幕要进行提示。
四:当被测区域内有多个台区的变压器运行、能明确各变压器之间的电气连接关系,即变压器室处于独立运行状态或是并联运行状态时,仪器满足以下要求:
1. 仪器工作在主机模式,支持不少于6个仪器同时进行测试工作,测试可由任意一台仪器发起,自动完成三相线路的电气连接关系测试;
2.发起测试的仪器要显示出与之存在电气连接关系的另一个仪器的编号和存在电气连接关系的相位;
3.三相自动测试周期不超过20秒,测试准确率100%;
五:测试结果显示:
1.仪器进行台变互测功能测试时,发起方和有连接关系的响应方同时显示有连接关系的主机所在台区的编号及有连接关系的相位信息。例如:XX台区X相连接等等。
2.当被测区域内有多个台区的变压器运行、需要快速确定电表与变压器的对应关系,仪器应满足以下要求:
3.每个台区接入工作在主机模式的仪器,同时测量的台区数量小不少于6个,每个仪器编号能保证;
4.仪器在液晶屏幕上要具备工作模式切换功能,即由主机模式切换成分机模式,也可由分机模式切换为主机模式。
5.仪器在液晶屏幕上具备通讯能力的模式切换功能,即由普通模式切换成增强模式,也可由增强模式切换为普通模式。
6.仪器对接入自身的三相电压相序进行测量并显示,显示结果为“正序”或“逆序”。
7.仪器能对接入的单相、三相电压的谐波进行测量并显示,测量结果显示的内容包括单三相电压有效值、基波电压、2-31谐波电压。
8.仪器能够测量并显示单三相电压、中线电压、电网频率、三相夹角(以A相位基准), 参数精度≤0.1%。
9.仪器能根据测量所得的单三相电压数据,计算并显示对应相位的电压波形畸变系数。
10.仪器具备自检功能,对因过压、冲击、内部器件老化或损坏等情况出现时,仪器对故障部分进行诊断并正确提示,给出使用者处理办法。
11.仪器在使用时具备自我保护功能,例如仪器在接线时误接入线电压后,仪器确保产品无损坏,并对误接线情况进行提示,并且仪器不能执行测试操作。保证安全。
12.仪器具备可更换保险丝,防止过流情况出现对仪器内部产生冲击造成仪器损坏。
13.仪器对配电线路中的故障或问题进行诊断并做声、光报警提示,对于线路中出现的零线断开、零线虚接原因进行屏
电并网对电网影响,还需考虑风电场无功问题。风电场无功消耗包括:异步发动机消耗;风机出口出口升压变压器;风电场升压站主变压器消耗等,如有必要,可采用动态电压控制设备。
目前风电的容量可信度常用的有两种评价方法:一种是计算含风电系统的可靠性指标,在保证系统可靠性不变的前提下,风电能够替代的常规发电机组容量即为其容量可信度,这种方法适合于系统的规划阶段;一种方法是时间序列仿真,选择合适的时间段作为研究对象,通过计算风电场的容量系数(风电场实际出力与理论发电量的比值)来估算容量可信度,在负荷高峰时段,可以认为容量系数等于容量可信度,该方法适用于为系统的运行提供决策支持。
3、风电并网对电网影响通过上述分析方法,风电并网对电网影响主要表现为以下几方面:3.1电压闪变
风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。当风速超过切出风速时,风机会从额定出力状态自动退出运行。如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。3.2谐波污染
风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。与电压闪变问题相比,风电并网带来的谐波问题不是很严重。
3.3电压稳定性大型风电场及其周围地区,常常会有电压波动大的情况。主要是因为以下三种情况。风力发电机组启动时仍然会产生较大的冲击电流。单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。
因此多台风力发电机组的并网需分组进行,且要有一定的间隔时间。当风速超过切出风速或发生故障时,风力发电机会从额定出力状态自双向台区识别仪*实用仪器使动退出并网状态,风力发电机组的脱网会产生电网电压的突降,而机端较多的电容补偿由于抬高了脱网前风电场的运行电压,从而引起了更大的电网电压的下降。
风电场风速条件变化也将引起风电场及其附近的电压波动。比如当风场平均风速加大,输入系统的有功功率增加,风电场双向台区识别仪*实用仪器使母线电压开始有所降低,然后升高。这是因为当风场输入功率较小时,输入有功功率引起的电压升数值小,而吸收无功功率引起的电压降大;当风场输入功率增大时,输入有功引起的电压升数值增加较大,而吸收无功功率引起的电压降增加较小。如果考虑机端电容补偿,则风电场的电压增加。