品牌
生产厂家厂商性质
武汉市所在地
.产品简介:
HDHG-P互感器伏安特性综合测试仪主要用于现场检测CT/PT的伏安特性、变比、极性、退磁、5%10%的误差曲线、二次侧回路检查和工频交流耐压等,单机输出电压可达1000V,电流达到600A,能满足装机容量500KV输变电工程检测环境。实验时仅需设定测试电压/电流值,不需要设置步长,设备便能够自动升压/升流,并将互感器的伏安特性曲线或变比、极性等实验结果快速显示出来,支持数据保存和现场打印,不但省去手动调压、人工记录、描曲线等繁琐劳动,还能通过USB接口与笔记本电脑联机上传测试数据,进行编辑保存或打印。操作简单方便,提高工作效率,是现场检测的选设备。
二.功能特点:
1.安全可靠:
MBC电源控制技术,单相AC220V输入电源,全隔离输出,设计更加科学合理,使用更加安全可靠。
注:其他同类产品工作电源与功率电源是分开输入方式,并且还需要使用三相AC380V双火线输入才能满足 实验要求,存在*的安全隐患,容易造成使用人员触电甚至伤亡等事故。
2.符合检修规程:
设备电源输出全部为真实电压和电流值,并且波形为标准正弦波,频率为50-60Hz;能够真正有效模拟互感器的真实状态,符合相关检修规定。
3.功能齐全:
HDHG-P互感器伏安特性综合测试仪可检测CT/PT的伏安特性、变比、极性、自动计算拐点电压和电流值及5%和10%误差曲线、二次交流耐压、CT一次通流(二次回路检查)和CT退磁等 项目,轻松实现一机多用。
4.接线方式简单:
采用单电源输入端口;仅有8个测试端口就可完成CT/PT所有测试项目,接线方式安全简单,非常适合现场使用,能够有效降低劳动强度,提高工作效率;
5.操作简单:采用旋转鼠标和大液晶显示器,操作方式简单,图形显示清晰,直观方便。
6.快速打印:采用热敏打印机,快速打印检测数据,非常适合进行现场数据对比。
7.大容量FLASH存储:可保存1000组试验数据,掉电后不丢失,可随时存取。
8.USB接口:方便连接新式笔记本电脑,上传测试数据,进行编辑保存。
9.体积小,重量轻:方便现场使用。
三:技术指标
主要测试功能 | |
一、对于电流互感器(CT): | 二、对于电压互感器(PT): |
1、伏安特性测试 | 1、伏安特性测试 |
2、变比测试 | 2、变比测试 |
3、极性判别 | 3、极性判别 |
4、5%和10%误差曲线 | 4、退磁 |
5、一次通流试验 | 5、工频交流耐压测试 |
6、退磁 | 6、退磁 |
7、工频交流耐压测试 |
项目/名称 | HDHG-P |
工作电源 | AC220V (50~60Hz) |
伏安输出电压 | 0~1000V |
伏安输出电流 | 0-15 A |
变比输出电流 | 0~600 A |
伏安测量精度 | < 0.5% |
变比测量精度 | < 0.5% |
工作温度 | -10~50℃ |
重量(Kg) | 22 |
更多详情请关注 武汉华顶电力设备有限公司
内调节,使风机风能利用系数Cp得到优化,获得高的系统效率;可以实现发电机较平滑的电功率输出;与电网连接简单,发电机本身不需要另外附加的无功补偿设备,可实现功率因素一定范围内的调节,例如从0.95先到0.95滞后范围内,因而具有调节无功功率出力的能力。
1.3直驱式交流永磁同步发电机
从大型风电机组实际运行经验中,齿轮箱是故障率较高部件。采用无齿轮箱结构则避免了这种故障的出现,可以大大提高风电机组的可利用率、可靠性,降低风电机组载荷,提高风力机组寿命。该机组采用直接驱动永磁式同步发电机,全部功率经A-D-A变换,接入电力系统并网运行。与其他机型比较,需考虑谐波治理问题。
2、风电并网对电网影响分析方法
由于风速变化是随机的,因此风电场出力也是随机的,风电本身这种特点使其容量可信度低,给电网有功、无功平衡调度带来困难。
在风电容量比较高的电网中,可能产生电能质量问题,例如电压波动和闪变、频率偏差,谐波问题等。更重要的是,需分析稳定性问题,系统静态稳定、动态稳定、暂态稳定、电压稳定等。当然,相同装机容量的风电场在不同接入点对电网的影响是不同的,在短路容量大的接入点对系统影响小,反之,影响大。
定量分析风电场对电网运行的影响,要从稳态和动态两方面进行分析。
稳态分析,就是对含风电场的电力系统进行潮流计算。在稳态潮流分析中,风电场高压母线不能简单视为PQ节点或PU节点。
含风电场电力系统对平衡节点的有功、无功平衡能力提出更高要求,要分析含风电场电网在电网大、小运行方式下,是否满足系统的安全稳定运行的各种约束。
动态分析过程,一般采用仿真的方法,要考虑异步发动机、双馈异步发动机等不同发电机的模型以及风速、风机、桨距调节等环节,用仿真程序PSS/E、PSCAD、PSASP等进行分析,分析的关键是各种风力发电机模型的选用。
分析风电并网对电网影响,还需考虑风电场无功问题。风电场无功消耗包括:异步发动机消耗;风机出口出口升压变压器;风电场升压站主变压器消耗等,如有必要,可采用动态电压控制设备。
目前风电的容量可信度常用的有两种评价方法:一种是计算含风电系统的可靠性指标,在保证系统可靠性不变的前提下,风电能够替代的常规发电机组容量即为其容量可信度,这种方法适合于系统的规划阶段;一种方法是时间序列仿真,选择合适的时间段作为研究对象,通过计算风电场的容量系数(风电场实际出力与理论发电量的比值)来估算容量可信度,在负荷高峰时段,可以认为容量系数等于容量可信度,该方法适用于为系统的运行提供决策支持。
3、风电并网对电网影响
通过上述分析方法,风电并网对电网影响主要表现为以下几方面:
3.1电压闪变
风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。当风速超过切出风速时,风机会从额定出力状态自动退出运行。如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。3.2谐波污染互感器励磁特性综合测试仪*实用
风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。另一种是风力发电机的互感器励磁特性综合测试仪*实用并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。与电压闪变问题相比,风电并网带来的谐波问题不是很严重。