品牌
生产厂家厂商性质
潍坊市所在地
葡萄酒生产废水处理专业厂家-山东凌科环保科技有限公司
工程现场
工程现场
葡萄酒污水的特点:
酿酒废水属易于生物降解的高浓度高悬浮物有机废水,其水质、水量变化范围较大。一是具有明显的季节性,其排水量在一年中变化较大;二是具有非连续性,在一日之中变化较大。变化系数一般可达2.0以上。参照酿酒废水环境,酿酒污水的特点是:①污水中的有机物含量较高,具有较好的生化性可生化降解性好,生化降解速度快,适于生物处理;②污水中含有大量的固体悬浮物质等,这些固体物质大多具有可沉淀、可分解的性质,因此必须加强污水的预处理工艺以去除这些悬浮物质,减轻后续处理工序的负荷。③污水水质和水量波动较大,必须加强调节以稳定污水水质水量,避免冲击负荷对生物处理设施的影响;总之,该酿酒废水污水中含有大量有机污染物,因此在治理工艺中要充分考虑COD、BOD等环保指标。
工艺遵循原则:
作为酿酒厂基础设施的重要组成部分和水污染控制的关键环节,本废水处理项目的建设和运行意义重大。由于废水处理工程的建设和运行不但耗资较大,而且受多种因素的制约和影响,其中处理工艺方案的优化选择对确保污水处理设施运行性能和降低费用zui为关键,因此有必要根据确定的标准和一般原则,从整体优化的观念出发,结合设计规模、废水水质特性以及当地的实际条件和要求,选择切实可行且经济合理的方案,经全面经济技术比较后优选出的总体工艺方案和实施方式。
在该废水处理工程的总体工艺方案确定中,将遵循以下原则:
(1)处理效果稳定可靠
(2)工艺控制调节灵活
(3)工程实施切实可行
(4)运行维护管理方便
(5)投资运行费用节省
(6)整体工艺协调优化
本工程废水COD较高,废水的生化处理一般采用厌氧+好氧的工艺。好氧处理可操用活性污泥法及生物膜法。活性污泥法在处理高浓度废水方面具有处理效果好、出水水质稳定、运行经验丰富等优点,因此在国内外污水处理中被广泛采用。废水生化处理的常用厌氧和好氧的处理方法比较如下:
1、污水厌氧处理技术介绍
厌氧处理是近年来污水处理领域发展较快的技术,具有高效低耗、运行稳定、产生沼气、可实现资源化利用等特点,已成为中、高浓度污水处理的主流技术之一。污水经过厌氧处理后有机物大大降低,有效减轻了后续工艺的处理负荷,为废水的达标治理增加筹码。
厌氧反应是一个复杂的生化过程,微观分析表明厌氧降解过程可分为四步:水解、酸化、产氢产酸及产甲烷过程。分述如下:
1)水解阶段
高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。故此它们在*阶段首先被细菌胞外酶分解为小分子。例如纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被*分解为麦芽糖和葡萄糖,蛋白质被蛋白酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。
2)酸化阶段
水解后大的小分子化合物在发酵细菌(即酸化菌)的细胞内转化为更简单的化合物并分泌到细胞外。这一阶段的主要产物有挥发性脂肪酸(简写作VFA)、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等。与此同时,酸化细菌也利用部分物质合成新的细胞物质,因此未经酸化处理的污水厌氧处理时会产生更多的剩余污泥。
酸化菌对pH有很大的容忍性,产酸可在pH到4条件下进行,产甲烷菌则有它自己的pH范围为6.5-7.5,超出这个范围转化速度将减慢。
3)产乙酸产氢阶段
在此阶段,上一阶段的产物被进一步降解为乙酸(又称醋酸)、氢和二氧化碳,这是zui终产甲烷反应的反应底物。
不论是在水解阶段或是在产酸产氢阶段,COD只是形态发生转化,仅仅是一种COD转化为另一种COD,实际的COD转化发生在产甲烷阶段,在那时,COD转化为甲烷而从污水中溢出,因此,如果将酸化后的污水直接进行好氧处理,运行成本不会有明显的变化。
4)产甲烷阶段
产甲烷菌是一种严格的厌氧微生物,与其它厌氧菌比较,其氧化还原电位非常低(‹-330mv)。在此阶段,酸化产物被产甲烷菌分解合成为CH4、CO2和H2O等,甲烷的转化产率约为70-75%,故COD大为降低。
2、污水好氧处理工艺的比较与选择
当前废水好氧处理可采用的方法有活性污泥法及生物膜法。活性污泥法在处理废水方面具有处理效果好、出水水质稳定、运行经验丰富等优点,因此在国内外污水处理中被广泛采用。活性污泥法有很多种工艺形式,目前使用较广泛有有以下几种:Orbal氧化沟工艺、CASS工艺和固定化微生物好氧池池工艺。
(1)Orbal氧化沟
目前氧化沟有很多形式种类,如Carrousel氧化沟、Orbal氧化沟及交替式氧化沟等,不管是什么形式的氧化沟,它们均具有氧化沟特性。
氧化沟是活性污泥法的一种变形,污水和活性污泥的混合液在环状的曝气渠道中不断循环流动,具有特殊的循环流态,既是*混合式又具有推流式的特征。氧化沟一般在延时曝气条件下运转,水和固体停留时间长,固体总量较多,因而能对进水水质的冲击有一定的缓冲作用。又因为氧化沟沟内循环量高于进水流量的几十倍甚至于上百倍,使其产生较大稀释能力。氧化沟的曝气装置不是全池分布,因而很容易在沟内形成好氧和缺氧交替出现的状态。
奥贝尔氧化沟由三个同心沟道组成,通过对三个沟道不同溶解氧呈梯度变化的控制,不仅能很好的降解有机物和悬浮物,还能有效地除磷脱氮,污水经过氧化沟完成生物降解后再进入沉淀池进行泥水分离。
Orbal氧化沟系统工艺需另设污泥回流系统,将沉淀后的污泥回流到氧化沟中,使微生物处于平衡状态,剩余污泥由剩余污泥泵排出。
(2)CASS法
周期循环活性污泥法(Cyclic Activated Sludge System,简称CASS)。CASS系统是一个间隙式反应器,是一种“进水和排水”活性污泥法,是在SBR工艺的基础上经过不断演变和改良,而发展的的新工艺。
CASS池主反应区后部安装有撇水装置,进水、曝气、沉淀、撇水、闭置在同一池子内周期循环运行。开始时,由于进水,池中的水位由某一zui低水位开始上升,在经过一定时间的曝气和混合后,停止曝气,以使活性污泥进行絮凝并在一个静止的环境中沉淀,在完成沉淀后,由一个移动式撇水装置排出已处理的上清液,使水位下降至池子设定zui低水位,然后再重复上述全过程。为了保持CASS池一个合理的污泥浓度,需要根据产生的污泥量来排出剩余污泥,排出剩余污泥一般在沉淀阶段结束后进行,排出污泥浓度可达10g/L。因此与其它活性污泥法相比,CASS池排出剩余污泥体积zui小。
CASS工艺特点:
①占地面积小,较普通曝气工艺减少40%左右;
②建筑费用低,较传统工艺省去了一沉池,二沉池及其它设施的投资;
③运行费用省,氧的吸收率高,除氮、脱磷不需另加药剂;
④自动化程度高,管理方便;
⑤污泥泥龄长,沉降性好,剩余污泥少;
⑥运行稳定,耐负荷冲击,不发生污泥膨胀。
(3)生物接触氧化池
由于废水大分子有机物含量较高,单纯的好氧生物处理难以达到要求,另外,污泥处置问题也是废水处理领域没有解决好的一大难题,因此,为了探求高效低耗,投资省的废水处理新技术,近年来在厌氧与好氧工艺的结合、好氧工艺强化两方面做了大量的研究,取得突破性的进展。
厌氧-接触氧化法工艺利用厌氧处理的水解和酸化阶段,而放弃产甲烷(碱性发酵)阶段,厌氧处理的主要目的是通过水解和非水解作用实现难生物降解有机物的转化,通过分子结构改变(开环、断键、 裂解、基团、还原等),使结构复杂难生物降解的有机物分子转化成可慢速或快速生物降解的有机物,从而明显改善污水的可生物处理性和脱色效果,使zui终电子受体包括难生物降解有机物(分子结构中的基团或化学键)。使出水水质稳定,减少冲击负荷,为好氧处理创造条件,采用这*程,较好解决SS(悬浮物)的问题。另一方面的特点是好氧段产生的剩余污泥全部回流到厌氧段,由于厌氧段有足够长的生物固体停留时间(SRT),污泥可在厌氧段进行*的厌氧消化,从而使剩余污泥在循环过程中全部分解为H2O和CO2,整个系统达到自身的污泥平衡,少排或不排污泥,有效地解决废水污泥的问题,同时还能起到生物脱氮的作用。因此流程的厌氧段具有双重作用,一是对废水进行预处理,改善其生化性,并吸附、降解一部分有机物;二是对系统的污泥进行消化处理。
接触氧化法的特征:
1、工艺方面的特征:
(1)生物固定化微生物好氧池法多采用比表面积大、空隙率高、水流通畅的生物填料,又加上充足的有机物和溶解氧,适用于微生物栖息增殖,因此生物膜上的生物是丰富的,除细菌和多种种属的原生动物和后生动物外,还能够生长氧化能力较强的球衣菌属的丝状菌,而无污泥膨胀现象发生。在生物膜上能够形成稳定的生态系统和食物链。
(2)填料表面全部为生物膜所密布,形成了生物膜的主体结构,由于丝状菌的大量滋生,有可能形成一个呈立体结构的密集的生物网,废水在其中通过能够有效地提高净化效果。
(3)由于进行曝气,生物膜表面不断的接受曝气吹脱,这样有利于保持生物膜的活性,一直厌氧膜的增殖,也宜于提高氧的利用率,因此能够保持较高浓度的活性生物量。正因为如此,生物固定化微生物好氧池法能够接受较高的有机负荷,处理效率较高,有利于减小反应池容积和占地面积。
2、运行方面的特征:冲击负荷有较强的适应能力,在间歇运行条件下,仍能够保持良好的处理效果,对排水不均匀的企业,更具有实际意义;操作简单,运行方便、易于维护管理,勿需污泥回流,不产生污泥膨胀现象;污泥生成量少,污泥颗粒较大,易于沉淀。
3、功能方面的特征:具有多种净化功能,除有效地去除有机污染物外,如运行得当还能够用以脱氮和除磷,因此可以作为三级处理技术。