切削液废水处理系统
技术领域
本发明属于废水处理技术领域,特别涉及一种具有控制系统的切削液废水的处理系统。
背景技术
切削液在机械加工、钢铁制造、轴承加工等过程中起到冷却、润滑、清洗和防锈等作用。切削液是机车、汽车制造业用量较大的金属加工润滑剂之一,兼有良好的润滑性、冷却性和清洗性,在各种切削加工工艺中广泛使用。然而它的的缺点是在使用过程中易变质,工作液稳定性差,使用寿命短。特别是在南方炎热的夏天使用周期只有一星期,有的甚至只有两三天就变质发臭了,在北方,夏季十几天,冬季月余,不得不更换新液,排掉废液。既增加生产成本,又污染环境。废切削液(HW09)是国家47类工业危险废物当中之一,处理费用相当昂贵,废切削液外观灰黑色,有难闻的臭味,其中在微生物的作用下能与另一种防锈剂—醇胺反应后会生成,这是一种已经被证实了的强致癌物质,其危害性更为严重。
现有技术处理切削液的方法一般采用絮凝剂沉淀后再进行生化处理,该方法存在工艺复杂、处理效率较低的缺点(通过此法处理切削液废水的处理结果,其中待处理的切削液废水中COD=23615mg/L,分别以质量比为0.6%的亚铁和质量比为0.4%的聚铁作为絮凝剂进行实验,经过处理后的切削液废水中COD(化学需氧量)去除率均低于85%),并且所需要的设备复杂、占地面积大。
正是由于切削液会对环境和人体造成污染和损害,切削液的使用和废液处理已受到环保法规日益严格的制约。研究推广有效的切削液废水的处理设备及处理技术,已成为切削液废水应用研究的一个重要课题。
主要解决的技术问题是提供一种切削液废水处理系统,将微电解、气浮处理合理的组合,形成一套低成本、处理效率高、系统运行稳定的切削液废水处理系统,而且本系统通过PLC控制器、PH传感器和流量计等,自动控制加药量,控制过程自动化程度高、控制精准,减少人工成本。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种切削液废水处理系统,包括按照切削液废水处理流程依次设置的混合反应池、微电解罐和气浮池,所述混合反应池的出水口与所述微电解罐的进水口相通,所述微电解罐的出水口和所述气浮池的进水口相通;
所述混合反应池的上方设有硫酸投放装置和絮凝剂投放装置,所述硫酸投放装置和所述絮凝剂投放装置皆与所述混合反应池相通;
所述微电解罐的罐底设有进水口,所述进水口通过进水管连接能够导电的放置槽,所述放置槽的截面为圆弧状,所述放置槽的槽壁上设有多个出水孔,所述放置槽上放置一,所述微电解罐内还设置有正电极柱,所述正电极柱和所述放置槽分别与位于放置槽下部的电源转换装置电连接;
所述气浮池内包括混合区、出水区和刮渣区,所述混合区位于所述气浮池的底部,所述出水区位于所述混合区的上方,所述刮渣区位于所述出水区的上方,所述混合区的底部具有进水口和溶气水进口,所述混合区的溶气水进口通过溶气水释放管外接溶气罐;所述出水区具有出水口;所述刮渣区设有刮渣机,所述刮渣机的一端的下方设有集渣槽,所述刮渣机由所述刮渣区朝向所述集渣槽刮渣;
还设有控制系统,所述控制系统包括PLC控制器、PH传感器、电磁阀和流量计,所述PH传感器、电磁阀和流量计皆与所述PLC控制器电连接,所述PH传感器位于所述混合反应池内,所述电磁阀位于所述硫酸投放装置与混合反应池之间、所述絮凝剂投放装置和所述混合反应池之间、所述溶气罐与所述气浮池之间;
所述微电解罐的电源转换装置与所述PLC控制器电连接。
进一步地说,所述电源转换装置提供24V低压电;所述出水孔的孔径为10-15mm,所述放置槽的开口直径为100-200mm。
进一步地说,所述微电解罐是直径300mm且高度400mm的有机玻璃罐。
进一步地说,所述溶气罐的进气口外接高压气源。
进一步地说,还设有砂滤罐和炭滤罐,所述气浮池的出水口通过管道连接所述砂滤罐的进水口,所述砂滤罐的出水口通过管道连接所述炭滤罐的进水口,且连接所述气浮池和所述砂滤罐的管道上或连接所述砂滤罐和所述炭滤罐的管道上设有抽水泵。
进一步地说,所述刮渣机为链式刮渣机,所述链式刮渣机包括驱动电机、链式传动机构和刮渣板,所述链式传动机构与所述驱动电机连接,所述刮渣板固定于所述链式传动机构,所述刮渣板在所述链式传动机构带动下移动,所述驱动电机与所述PLC控制器电连接。
进一步地说,所述为椭球形,所述的三个半主轴分别为10-20mm、15-25mm和20-30mm。
进一步地说,所述混合反应池的PH值调节为弱酸性,PH值范围在5.0-6.3之间。
进一步地说,所述絮凝剂投放装置投放的絮凝剂为PAM(聚丙烯酰胺)。
进一步地说,所述混合反应池和所述微电解罐之间的管道上以及所述微电解罐与所述气浮池之间的管道上设有抽水泵。